Search results for " Suzuki Reaction"

showing 9 items of 9 documents

Design of PNIPAAM covalently grafted on halloysite nanotubes as a support for metal-based catalysts

2016

A thermo-responsive polymer such as poly(N-isopropylacrylamide) (PNIPAAM) was covalently grafted on the external surface of halloysite nanotubes (HNTs) by means of microwave irradiation. This nanomaterial was used as a support and stabilizer for palladium nanoparticles. The obtained HNT–PNIPAAM/PdNPs was characterized by means of TGA, SEM, EDS and TEM analyses. The palladium content of the catalyst was estimated to be 0.4 wt%. The stability of the catalytic material at different temperatures (below and above the PNIPAAM lower critical solution temperature) was tested in the Suzuki reaction under microwave irradiation. In addition, TEM analysis after five consecutive runs was performed. The …

inorganic chemicalsMaterials scienceGeneral Chemical Engineeringchemistry.chemical_element02 engineering and technologyengineering.material010402 general chemistry01 natural sciencesHalloysiteLower critical solution temperatureNanomaterialsCatalysischemistry.chemical_compoundSuzuki reactionhalloysite PNIPAAM; microwave Suzuki reaction waterPolymer chemistryhalloysite PNIPAAMPhenylboronic acidSettore CHIM/02 - Chimica Fisicachemistry.chemical_classificationmicrowave Suzuki reaction waterSettore CHIM/06 - Chimica OrganicaGeneral ChemistryPolymer021001 nanoscience & nanotechnology0104 chemical scienceschemistryengineering0210 nano-technologyPalladiumNuclear chemistryRSC Advances
researchProduct

Green conditions for the Suzuki reaction using microwave irradiation and a new HNT- supported ionic liquid-like phase (HNT-SILLP) catalyst

2014

A new catalytic system based on modified halloysite nanotubes was employed in the Suzuki reaction under microwave irradi- ation. A set of solvents, times and bases was screened and the best experimental conditions were obtained when the reactions were carried out for 10 min in water–ethanol at 120 °C in presence of K2CO3 as base. Good recyclability was observed. The new catalytic system was employed using either 1 mol% or 0.1 mol%. The palladium catalyst displayed good activity, allowing the synthesis of several biphenyl compounds in high yield working with only 0.1 mol% palladium loading. The application of mi- crowave irradiation decreased the reaction time and also improved conversion wi…

microwaveSuzuki reactionHalloysite; Suzuki reaction; microwave; SILLP (supported ionic liquid-like phase)HalloysiteSILLP (supported ionic liquid-like phase)Settore CHIM/06 - Chimica OrganicaSettore CHIM/02 - Chimica Fisica
researchProduct

Palladium supported on Halloysite-triazolium salts as catalyst for ligand free Suzuki cross-coupling in water under microwave irradiation

2015

Abstract Environmental friendly halloysite-dicationic triazolium salts (second generation) obtained by subsequent click reactions of a diyne derivative in the presence of 2-azidopropyl-modified halloysite nanotubes, were used as supports for palladium catalyst. Thanks to the high triazolium loading (25%) these materials were able to support higher amount of the metal than that on the monocationic derivative (first generation). Such materials were characterized by thermogravimetric analysis, FT-IR spectroscopy and SEM investigations. The new catalytic system was employed in the ligand free Suzuki cross-coupling under microwave irradiation. A set of solvent, time and% loading of palladium was…

Thermogravimetric analysisSuzuki reactionHalloysite nanotubeInorganic chemistrychemistry.chemical_elementengineering.materialTriazolium saltHalloysiteCatalysisCatalysisMetalchemistry.chemical_compoundMulti-layered ionic liquidTriazolium salt Multi-layered ionic liquids Halloysite nanotubes Suzuki reaction MicrowavePhysical and Theoretical ChemistrySettore CHIM/02 - Chimica FisicaBiphenylProcess Chemistry and TechnologySettore CHIM/06 - Chimica OrganicaSolventchemistryvisual_artvisual_art.visual_art_mediumengineeringLeaching (metallurgy)MicrowavePalladiumJournal of Molecular Catalysis A: Chemical
researchProduct

GREEN CONDITIONS FOR THE SUZUKI REACTIONS BY USING MICROWAVE IRRADIATION AND MODIFIED HALLOYSITE/Pd CATALYST

2014

Halloysite nanotube (HNT) is an emerging biocompatible material with appealing perspective for technological applications, such as in catalysis1 and in pharmaceutical research.2 Halloysite is a double-layered aluminosilicate mineral that has a predominantly hollow tubular structure. The functionalization of HNTs is a good strategy to introduce an organic moiety onto the external surface and, therefore, to obtain innovative catalyst supports.3 We have modified the external surface of halloysite nanotube with octylimidazolium moieties (HNT-IL) by microwave irradiation in solvent-free conditions and we have have employed this material as support catalyst of Pd nanoparticles. The new HNT/Pd cat…

halloysite supported catalyst suzuki reaction microwave
researchProduct

ORGANIC-INORGANIC HYBRID CATALYSTS BASED ON IMIDAZOLIUM AND THIAZOLIUM SALTS

In the last years, great attention was focused on immobilized ionic liquids for their application in the field of catalysis. The main challenge is represented by the possibility of combining the benefits of the ionic liquids to that of the supports. In order to achieve this ambitious objective both the choice of the support and the functionalization strategy are of fundamental importance. In this context, one of the aims of this doctoral project was to develop novel catalysts based on covalently mono- or multilayer imidazolium or thiazolium networks onto a high ordered mesoporous silica or carbon nanotubes materials. The second goal of this PhD thesis was to design novel imidazolium based c…

Catalysis ionic liquids organic-inorganic hybrid materials palladium nanoparticles POSS single walled carbon nanotubes conversion of carbon dioxide Suzuki reactions.Settore CHIM/06 - Chimica Organica
researchProduct

SYNTHESIS AND EVALUATION OF CATALYTIC ACTIVITY IN WATER AND MICROWAVE IRRADIATION OF A NEW SUPPORT BASED ON HNT TRIAZOLIUM SALTS

2014

In the last years SILLP (supported ionic liquid-like phase)-based materials prepared by covalent attachment have been synthesized [1]. Recently, we have synthesized a palladium-based catalytic system using halloysite nanotubes modified with octylimidazolium moieties and we have tested it in the Suzuki cross-coupling reaction under traditional heating, microwave irradiation and a very small amount of Pd catalyst [2,3]. It is known that support based on triazole motif showed superior activity to the analogous imidazole molecules [4] so, we have focused our attention to develop a new SILLP system with triazolium moiety. Herein we report the synthesis of an original Pd-dicationic triazolium sup…

halloysite supported catalyst suzuki reaction triazolium salt
researchProduct

Supported C60-IL-PdNPs as extremely active nanocatalysts for C-C cross-coupling reactions

2016

A C60-ionic liquid hybrid has been covalently linked to three different solid supports, namely amorphous silica, SBA-15 and Fe2O3@SiO2, and the resulting materials have been employed as covalently supported ionic liquid phases (cSILP) in order to immobilize and stabilize palladium nanoparticles (PdNPs). These novel hybrid materials are based on a sort of "matryoshka" system (PdNPs@imidazolium-salt@C60@support) in which the imidazolium-based moieties have not been directly linked to the surface of the support, but they are present in an octopus-like spatial arrangement on the uniformly surface-distributed fullerenes. These materials have been fully characterized and successfully employed as …

Materials scienceFullerene010405 organic chemistryRenewable Energy Sustainability and the EnvironmentChemistry (all)General ChemistrySettore CHIM/06 - Chimica OrganicaMaterials Science (all) Heterogeneous Catalysis Nanoparticles Suzuki reaction Heck reactioncross coupling010402 general chemistry01 natural sciencesNanomaterial-based catalystCoupling reaction0104 chemical sciencesCatalysischemistry.chemical_compoundChemical engineeringchemistryCovalent bondIonic liquidOrganic chemistryGeneral Materials ScienceAmorphous silicaHybrid material
researchProduct

Supported Fullerene C60-Ionic Liquid Hybryds as New Catalytic Materials

2015

Fullerene C60 Ionic Liquids Catalysis Suzuki reactionSettore CHIM/06 - Chimica Organica
researchProduct

DEEP EUTECTIC SOLVENTS E LIQUIDI IONICI: SOLVENTI PER LO SVILUPPO DI PROCESSI ECO-COMPATIBILI

2020

L’obiettivo di questi tre anni di Dottorato è stato lo studio e l’utilizzo nuovi solventi di reazione in grado di sostituire i solventi organici classici. In particolare sono stati studiati i Deep Eutectic Solvent (DES) e le miscele di Liquidi Ionici (IL). I DES sono stati utilizzati come solventi per lo studio di reazioni organiche, usate per la formazione di nuovi legami C-C. Nello specifico sono state studiate la reazione di Diels-Alder, e diverse reazioni di coupling C-C catalizzate da Pd. In seguito, i DES sono stati utilizzati per la formazione di nuovi gel supramolecolari, chiamati eutectogel. Questi gel sono stati formati usando come gelator amminoacidi naturali, consentendo quindi …

Green Chemistry Deep Eutectic Solvents Solventi Liquidi Ionici Eutectogel gel supramolecolari Diels-Alder solventi alternativi Reazione di accoppiamento C-C Reazione di Suzuki 5-HMF Biomasse Disidratazione di carboidrati Fruttosio Glucosio Saccarosio Processi Eco-compatibili.Settore CHIM/06 - Chimica OrganicaGreen Chemistry Deep Eutectic Solvents Solvents Ionic Liquids Eutectogel supramolecular gels Diels-Alder alternative solvents Cross Coupling Reaction Suzuki Reaction Sonogashira Reaction Heck Reaction Hiyama Reaction 5-HMF Biomass carbohydrate dehydration Fructose Glucose Saccarose.
researchProduct