Search results for " Suzuki Reaction"
showing 9 items of 9 documents
Design of PNIPAAM covalently grafted on halloysite nanotubes as a support for metal-based catalysts
2016
A thermo-responsive polymer such as poly(N-isopropylacrylamide) (PNIPAAM) was covalently grafted on the external surface of halloysite nanotubes (HNTs) by means of microwave irradiation. This nanomaterial was used as a support and stabilizer for palladium nanoparticles. The obtained HNT–PNIPAAM/PdNPs was characterized by means of TGA, SEM, EDS and TEM analyses. The palladium content of the catalyst was estimated to be 0.4 wt%. The stability of the catalytic material at different temperatures (below and above the PNIPAAM lower critical solution temperature) was tested in the Suzuki reaction under microwave irradiation. In addition, TEM analysis after five consecutive runs was performed. The …
Green conditions for the Suzuki reaction using microwave irradiation and a new HNT- supported ionic liquid-like phase (HNT-SILLP) catalyst
2014
A new catalytic system based on modified halloysite nanotubes was employed in the Suzuki reaction under microwave irradi- ation. A set of solvents, times and bases was screened and the best experimental conditions were obtained when the reactions were carried out for 10 min in water–ethanol at 120 °C in presence of K2CO3 as base. Good recyclability was observed. The new catalytic system was employed using either 1 mol% or 0.1 mol%. The palladium catalyst displayed good activity, allowing the synthesis of several biphenyl compounds in high yield working with only 0.1 mol% palladium loading. The application of mi- crowave irradiation decreased the reaction time and also improved conversion wi…
Palladium supported on Halloysite-triazolium salts as catalyst for ligand free Suzuki cross-coupling in water under microwave irradiation
2015
Abstract Environmental friendly halloysite-dicationic triazolium salts (second generation) obtained by subsequent click reactions of a diyne derivative in the presence of 2-azidopropyl-modified halloysite nanotubes, were used as supports for palladium catalyst. Thanks to the high triazolium loading (25%) these materials were able to support higher amount of the metal than that on the monocationic derivative (first generation). Such materials were characterized by thermogravimetric analysis, FT-IR spectroscopy and SEM investigations. The new catalytic system was employed in the ligand free Suzuki cross-coupling under microwave irradiation. A set of solvent, time and% loading of palladium was…
GREEN CONDITIONS FOR THE SUZUKI REACTIONS BY USING MICROWAVE IRRADIATION AND MODIFIED HALLOYSITE/Pd CATALYST
2014
Halloysite nanotube (HNT) is an emerging biocompatible material with appealing perspective for technological applications, such as in catalysis1 and in pharmaceutical research.2 Halloysite is a double-layered aluminosilicate mineral that has a predominantly hollow tubular structure. The functionalization of HNTs is a good strategy to introduce an organic moiety onto the external surface and, therefore, to obtain innovative catalyst supports.3 We have modified the external surface of halloysite nanotube with octylimidazolium moieties (HNT-IL) by microwave irradiation in solvent-free conditions and we have have employed this material as support catalyst of Pd nanoparticles. The new HNT/Pd cat…
ORGANIC-INORGANIC HYBRID CATALYSTS BASED ON IMIDAZOLIUM AND THIAZOLIUM SALTS
In the last years, great attention was focused on immobilized ionic liquids for their application in the field of catalysis. The main challenge is represented by the possibility of combining the benefits of the ionic liquids to that of the supports. In order to achieve this ambitious objective both the choice of the support and the functionalization strategy are of fundamental importance. In this context, one of the aims of this doctoral project was to develop novel catalysts based on covalently mono- or multilayer imidazolium or thiazolium networks onto a high ordered mesoporous silica or carbon nanotubes materials. The second goal of this PhD thesis was to design novel imidazolium based c…
SYNTHESIS AND EVALUATION OF CATALYTIC ACTIVITY IN WATER AND MICROWAVE IRRADIATION OF A NEW SUPPORT BASED ON HNT TRIAZOLIUM SALTS
2014
In the last years SILLP (supported ionic liquid-like phase)-based materials prepared by covalent attachment have been synthesized [1]. Recently, we have synthesized a palladium-based catalytic system using halloysite nanotubes modified with octylimidazolium moieties and we have tested it in the Suzuki cross-coupling reaction under traditional heating, microwave irradiation and a very small amount of Pd catalyst [2,3]. It is known that support based on triazole motif showed superior activity to the analogous imidazole molecules [4] so, we have focused our attention to develop a new SILLP system with triazolium moiety. Herein we report the synthesis of an original Pd-dicationic triazolium sup…
Supported C60-IL-PdNPs as extremely active nanocatalysts for C-C cross-coupling reactions
2016
A C60-ionic liquid hybrid has been covalently linked to three different solid supports, namely amorphous silica, SBA-15 and Fe2O3@SiO2, and the resulting materials have been employed as covalently supported ionic liquid phases (cSILP) in order to immobilize and stabilize palladium nanoparticles (PdNPs). These novel hybrid materials are based on a sort of "matryoshka" system (PdNPs@imidazolium-salt@C60@support) in which the imidazolium-based moieties have not been directly linked to the surface of the support, but they are present in an octopus-like spatial arrangement on the uniformly surface-distributed fullerenes. These materials have been fully characterized and successfully employed as …
Supported Fullerene C60-Ionic Liquid Hybryds as New Catalytic Materials
2015
DEEP EUTECTIC SOLVENTS E LIQUIDI IONICI: SOLVENTI PER LO SVILUPPO DI PROCESSI ECO-COMPATIBILI
2020
L’obiettivo di questi tre anni di Dottorato è stato lo studio e l’utilizzo nuovi solventi di reazione in grado di sostituire i solventi organici classici. In particolare sono stati studiati i Deep Eutectic Solvent (DES) e le miscele di Liquidi Ionici (IL). I DES sono stati utilizzati come solventi per lo studio di reazioni organiche, usate per la formazione di nuovi legami C-C. Nello specifico sono state studiate la reazione di Diels-Alder, e diverse reazioni di coupling C-C catalizzate da Pd. In seguito, i DES sono stati utilizzati per la formazione di nuovi gel supramolecolari, chiamati eutectogel. Questi gel sono stati formati usando come gelator amminoacidi naturali, consentendo quindi …